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A B S T R A C T

Although the magnetorotational instability (MRI) has been widely accepted as a powerful

accretion mechanism in magnetized accretion discs, it has not been realized in the laboratory.

The possibility of studying MRI in a rotating liquid metal annulus (Couette flow) is explored

by local and global stability analysis. Stability diagrams are drawn in dimensionless

parameters, and also in terms of the angular velocities at the inner and outer cylinders. It is

shown that MRI can be triggered in a moderately rapidly rotating table-top apparatus, using

easy-to-handle metals such as gallium. Practical issues of this proposed experiment are

discussed.
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1 I N T R O D U C T I O N

Astrophysical magnetic fields have long been recognized to be

important but difficult to understand. A prominent example

concerns accretion discs (Shakura & Sunyaev 1973; Lynden-Bell

& Pringle 1974), where orbiting plasmas gradually accrete on to a

central mass. Three types of central object occur: protostars (stars

in formation), collapsed stars in binary systems (white dwarfs,

neutron stars and black holes), and supermassive black holes in

active galactic nuclei (quasars etc.). In addition to the accretion

process, jets and other spectacular phenomena may be magneti-

cally driven by the disc (e.g. Meier, Koide & Uchida 2001).

Understanding the dynamics and dissipation mechanisms in

accretion discs holds an important key to understanding many

active astronomical systems as a whole.

The accretion rates cannot be due to ordinary molecular or

plasma viscosity because of the extraordinarily high Reynolds

numbers involved. Theorists have often appealed to hydrodynamic

turbulence (Pringle 1981), but recent numerical simulations

indicate that non-magnetic discs are stabilized by their positive

angular momentum gradient (Balbus, Hawley & Stone 1996; Cabot

1996; Hawley, Balbus & Winters 1999); in effect, Rayleigh’s

stability criterion appears to suppress local non-axisymmetric as

well as axisymmetric disturbances (Rayleigh 1916). Linear

axisymmetric instability of a magnetized but Rayleigh-stable

fluid, the magnetorotational instability (MRI), was discovered

decades ago (Velikhov 1959; Chandrasekhar 1960) but did not

come to the attention of the astrophysical community until

recently rediscovered (Balbus & Hawley 1991a), despite general

recognition that magnetic effects might somehow be important

(Shakura & Sunyaev 1973). Since then, many analytic and

numerical studies of the MRI have been performed under

increasingly complex and realistic assumptions, including such

effects as finite resistivity, global boundary conditions, and non-

linearity in two and three dimensions (Balbus & Hawley 1991b;

Curry, Pudritz & Sutherland 1994; Blaes & Balbus 1994;

Brandenburg et al. 1995; Matsumoto & Tajima 1995; Hawley,

Gammie & Balbus 1996; Stone et al. 1996; Gammie 1996; Jin

1996; Sano & Miyama 1999; Fleming, Stone & Hawley 2000;

Hawley 2000).

Despite its popularity and importance, however, the MRI has

never been realized in the laboratory or demonstrated observa-

tionally. Laboratory plasma experiments are primarily magneti-

cally driven, and the observed flows, often induced as secondary

effects of other instabilities, are small compared with the Alfvén

speed. On the other hand, the existing body of experimental work

on magnetized Couette flow using liquid metals (Donnelly &

Ozima 1960, 1962; Donnelly & Caldwell 1964; Brahme 1970) has

focused on magnetic stabilization of the Rayleigh instability, as

first analysed by Chandrasekhar (1961). In this Letter, we explore

the feasibility of a Couette flow experiment dedicated to MRI.

2 L O C A L S TA B I L I T Y A N A LY S I S

Couette flow involves a liquid confined between rotating coaxial

cylinders (Couette 1890). Let their radii be r1 , r2, and their

angular velocities V1, V2. In steady state, the radial angular

momentum flux, h � 2pr � rn � r 2ð2›V=›rÞ, is constant with

radius, where h is the depth of the liquid, r is its density, and n is its

kinematic viscosity. If ›h/›r ¼ 0, then the angular velocity of thePE-mail: hji@pppl.gov
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liquid satisfies r 3›V=›r ¼ constant, so that

VðrÞ ¼ a 1
b

r 2
; ð1Þ

where a ¼ ðV2r2
2 2 V1r2

1Þ=ðr
2
2 2 r2

1Þ and b ¼ r2
1r2

2ðV1 2 V2Þ=

ðr2
2 2 r2

1Þ. The Rayleigh stability criterion is aV . 0.

The dynamics of liquid metals is well described by the

incompressible and dissipative magnetohydrodynamic (MHD)

equations,

0 ¼ 7 :V;

0 ¼ 7 :B;

›B

›t
¼ 7 � ðV � BÞ1 h72B;

›V

›t
1 ðV :7ÞV ¼

ðB :7ÞB

m0r
2

1

r
7 p 1

B 2

2m0

� �
1 n72V;

where V is velocity, B is magnetic field, h is magnetic diffusivity,

and p is a scalar potential incorporating both pressure and gravity.

In cylindrical coordinates, the equilibrium quantities are B0 ¼

ð0; 0;BÞ and V0 ¼ ð0; rV; 0Þ, and the balance of forces is ›p0/›z ¼ 0

and ›p0/›r ¼ rrV2.

WKB methods describe the stability of this system very well

even on the largest scales. Using cylindrical coordinates, the pertur-

bations are B1 ¼ ðBr ;Bu;BzÞ and V1 ¼ ðVr;Vu;VzÞ, all propor-

tional to expðgt 2 ikzz 2 ikrrÞ, so that g is the growth rate and the

perturbations are axisymmetric. The minimum kz and kr are assumed

to be p/ h and p=ðr2 2 r1Þ, respectively, so that the total

wavenumber k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

z 1 k2
r

q
¼ kz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 e 2
p

, where e; h/ ðr2 2 r1Þ

is the elongation of a toroidal cross-section of the liquid metal

annulus. The linearized equations of motion are

0 ¼ krVr 1 kzVz;

0 ¼ krBr 1 kzBz;

gBr ¼ 2 ikzBVr 2 hk 2Br ;

gBu ¼ 2 ikzBVu 1
›V

› ln r
Br 2 hk 2Bu;

gVr 2 2VVu ¼ 2 i
kzB

m0r
Br 1 i

kr

r
p1 1 i

krB

m0r
Bz 2 nk 2Vr ;

gVu 1
k 2

2V
Vr ¼ 2 i

kzB

m0r
Bu 2 nk 2Vu;

gVz ¼ i
kz

r
p1 2 nk 2Vz;

where the epicyclic frequency is defined by k 2 ;
ð1/ r 3Þ›ðr 4V2Þ=›r ¼ 4V2 1 ›V2/› ln r and p1 is the perturbed

pressure. The vertical induction equation is not needed since Bz can

be deduced from 7 :B ¼ 0. These equations lead to the following

dispersion relation:

½ðg 1 nk 2Þðg 1 hk 2Þ1 ðkzVAÞ
2�2

k 2

k2
z

1 k 2ðg 1 hk 2Þ2

1
›V2

› ln r
ðkzVAÞ

2 ¼ 0:

The Alfvén speed is VA; B/
ffiffiffiffiffiffiffiffi
m0r
p

. This dispersion relation is

identical to the one derived for accretion discs in the

incompressible limit (Sano & Miyama 1999).

Introducing a dimensionless vorticity parameter, z;

ð1/ rVÞ›ðr 2VÞ=›r ¼ 2 1 › lnV=› ln r; we have k 2 ¼ 2V2z so that

the Rayleigh stability criterion becomes z $ 0. Similarly,

›V2/› ln r ¼ 2V2ðz 2 2Þ: There are three other relevant frequen-

cies: resistive, vh ;hk 2; viscous, vn ; nk 2; and Alfvénic,

vA; | kzVA|. Because liquid metals are far more resistive than

viscous, vh serves as a base frequency in the following three

dimensionless parameters: magnetic Prandtl number, Pm ;vn/vh;

Lundquist number, S ;vA/vh; and magnetic Reynolds number,

Rm ;V/vh. The astrophysical literature gives several inequivalent

definitions of ‘magnetic Reynolds number’, some corresponding to

our S. Some involve the sound speed, cs, for, although MRI is

essentially non-compressive, vertical force balance in an astro-

physical disc relates cs to the half-thickness: cs < hV. The free

energy for MRI derives from differential rotation, represented in

our dimensionless system by a combination of z and Rm; however,

magnetic field, represented by S, is required to liberate this energy

from hydrodynamic constraints.

Using the normalized growth rate, g/vh ! g, the dispersion

relation can be rewritten as

½ðg 1 PmÞðg 1 1Þ1 S 2�2ð1 1 e 2Þ1 2zR2
mðg 1 1Þ2

2 2ð2 2 zÞR2
mS 2 ¼ 0:

It can be shown that there are no purely imaginary roots for g, as

follows. Suppose that g ¼ iv for real and non-zero v. From the

imaginary part of the equation above, one finds

v 2 ¼ S 2 1 Pm 1 ð1 1 PmÞzs
2; s;

Rm

1 1 Pm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 1 e 2

r
:

Substituting this into the real part yields

s 4z 2 1 2s 2z 1 1 1
S 2

Pm

1 2
Ss 2

Pm

¼ 0:

This is a quadratic equation in z which must be real. However, the

discriminant

2s 4 S 2

Pm

1 2
Ss 2

Pm

� �
is negative unless S ¼ 0 or Rm ¼ 0. Hence there are no purely

oscillatory modes. On the other hand, all roots of the dispersion

relation for g have negative real parts as Rm ! 0 (non-rotating

flow). Hence the transition to instability occurs through g ¼ 0, and

the necessary and sufficient condition for stability is that the value

of the dispersion relation at g ¼ 0 remain positive as Rm increases:

ðPm 1 S 2Þ2ð1 1 e 2Þ1 2zR2
m 2 2ð2 2 zÞR2

mS 2 $ 0; ð2Þ

which can be taken into various limits.

(i) Non-magnetic limit. As h!1, the three terms S 4, RmS 2 and

R2
mS 2 approach zero faster than the others, leading to the stability

condition P2
mð1 1 e 2Þ1 2zR2

m $ 0. Stability occurs when z $ 0,

and also when z , 0 if the Taylor number-like expression

22zV2/n 2k 4 # 1 1 e 2 (Taylor 1923).

(ii) Ideal MHD limit. As h!0, the other two terms dominate,

with stability for S 2ð1 1 e 2Þ $ 2ð2 2 zÞR2
m. Instability occurs at

sufficiently weak fields (small S ) unless z $ 2, i.e. › lnV=› ln r $ 0

(Balbus & Hawley 1991a).

(iii) Small-Pm limit. In liquid metals, usually viscosity is much

smaller than resistivity, Pm , 1026. As Pm ! 0, equation (2)
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reduces to

z $
2S 2

S 2 1 1
2

S 4ð1 1 e 2Þ

2R2
mðS

2 1 1Þ:
ð3Þ

3 S TA B I L I T Y D I AG R A M S A N D G R OW T H

R AT E S

The stability condition (3) defines a two-dimensional surface in the

parameter space (S, z, Rm) at fixed e. To illustrate the dependence

on these parameters, we vary only two of them at a time. Stability

boundaries in the (z, S) plane are shown in Fig. 1 for the case of

e ¼ 1. When z , 0, the annulus is unstable hydrodynamically to

the Rayleigh mode at S ¼ 0 but can be stabilized (Chandrasekhar

1961) by a large magnetic field (large S ). When z . 0, the annulus

is stable at zero field but unstable at some S . 0 if Rm is large

enough. Stability returns at even larger S. The unstable region

extends to larger S and z at larger Rm. Stability at S ¼ 0 and

stability as S!1 are hallmarks of MRI (Balbus & Hawley 1991a,

1998). (In ideal MHD, instability extends formally to S ¼ 01:Þ It

can be seen that there is a maximum z above which MRI is absent

for a given Rm. From equation (3),

zmax ¼ 2 2
1 1 e 2

R2
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1

4R2
m

1 1 e 2

s
2 1

0@ 1A ð4Þ

at the S-value given by S 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 1 4R2

m/ ð1 1 e 2Þ

q
2 1.

Fig. 2 shows stability in the (z, Rm) plane. Region (I) is

hydrodynamically unstable but can be stabilized by a finite

magnetic field. This region has been extensively studied both

theoretically and experimentally (Chandrasekhar 1961), and is

exemplified by point B. Region (II) is hydrodynamically stable but

Figure 1. Stability of a rotating liquid metal annulus in dimensionless

parameter space of (z, S) at a few values of Rm for the case of e ¼ 1. Areas

to the right of the curves indicate stability.

Figure 2. Stability of a rotating liquid metal annulus in (z, R) space. Here

the stability can be divided into three regions: region (I) is

hydrodynamically unstable but can be stabilized by a finite magnetic

field, as exemplified by point B. Region (II) is hydrodynamically stable but

can be destabilized by the presence of a magnetic field (MRI), as

exemplified by points A and C. Region (III) is always stable. Results from

global eigenmode analysis are also shown: a dotted line for conducting

boundary conditions and a dashed line for insulating boundary conditions.

Figure 3. Stability diagram of a rotating gallium annulus in (V2,V1) space

with dimensions r1 ¼ 0:05 m, r2 ¼ 0:15 m and h ¼ 0:1 m. The growth rates

of points A, B and C, corresponding to those in Fig. 2, are also shown as

functions of magnetic field in (b). Results from global eigenmode analysis

are also shown: dotted lines for conducting boundary conditions and dashed

lines for insulating boundary conditions.
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destabilized by a magnetic field. This is the MRI region, and has

never been studied experimentally. Growth rates at points A and C

are given below. Region (III) is always stable. The boundary

between regions (II) and (III) is given by equation (4).

It is useful to project the stability diagram on to experimentally

controllable parameters. To apply the local dispersion relation, we

take z ¼ 2a/ �V (from equation 1) and Rm ; �V/vh, with
�V;

ffiffiffiffiffiffiffiffiffiffiffiffi
V1V2

p
. Fig. 3(a) shows stability in the (V2, V1) plane for

an annulus of dimensions r1 ¼ 0:05 m, r2 ¼ 0:15 m and h ¼ 0:1 m

(hence e ¼ 1Þ filled with gallium ðr . 6 � 103 kg m23,

h . 0:2 m2 s21, n . 3 � 1027 m2 s21Þ. Table 1 lists the physical

parameters at points A, B and C. The corresponding growth rates

are shown as functions of magnetic field in Fig. 3(b).

The applicability of WKB is subject to doubt, since the most

unstable wavelengths are larger than the gap width and cylinder

height. In fact, global analysis shows that the eigenfunctions are

non-sinusoidal and sensitive to the boundary conditions. Yet the

growth rates are remarkably robust. A linearized, finite-difference,

initial-value code was written to detect the fastest growing mode.

Periodic boundary conditions were used in z. Radial boundaries

were impenetrable and no-slip ðdV1 ¼ 0Þ, and electrically either

perfectly insulating or perfectly conducting. The results are

compared with the WKB analysis in Figs 2 and 3. Fig. 4 shows

eigenmodes for the parameters of point C with B ¼ 0:3 tesla.

Differences between the conducting and insulating cases can be

seen near the inner boundaries. A Hartmann layer (Hartmann

1937), consisting of large toroidal and axial velocities within a

radial thickness of , ffiffiffiffiffiffi
nh
p

/VA , 1 mm (not visible in Fig. 4), forms

at the inner conducting boundary as the Lorentz force, djr � Bz,

balances with the viscous force. Nevertheless, the growth rates are

remarkably similar to those of the local analysis, which therefore

should suffice for preliminary experimental design. [Details of the

global analysis will be reported elsewhere (Goodman & Ji 2001).]

A fully non-linear incompressible MHD code has been

developed to study the problem in three dimensions (Kageyama,

Ji & Goodman, in preparation). Initial results from linear and two-

dimensional runs of this code with conducting, freely-slipping

boundary conditions agree with the local and global analyses. For

example, for the conditions given by point C in Figs 2 and 3 at

B ¼ 0:3 tesla, the growth rate is 21.67 s21 from simulations,

21.90 s21 from global analysis, and 19.10 s21 from local analysis.

4 D I S C U S S I O N A N D C O N C L U S I O N S

Several issues must be explored before committing to an

experimental design. The first is geometric optimization with

regard to aspect ratio ½A ; ðr2 1 r1Þ=ðr2 2 r1Þ� and elongation

½e; h/ ðr2 2 r1Þ�. Obviously, e , 1 is desirable to minimize

volume, and therefore expense, at a given growth rate. Less

obviously, aspect ratios close to unity cause the eigenmodes and

growth rates to be dominated by the inner cylinder, which is

undesirable if the aim is to imitate relatively uniform local

conditions within an astrophysical disc. Therefore moderate values

of A(,2) and e(,1) are preferred.

The periodic vertical boundary conditions used in all of our

analyses take no account of viscous layers at the top and bottom of

the flow. (The top will have to be capped because of large radial

pressure gradients.) The main effect of these viscous boundary

layers is to drive Ekman circulation, which flows more rapidly

against a weak angular momentum gradient than against uniform

rotation. The thickness of the Ekman layer dE < z21=4
ffiffiffiffiffiffiffiffiffi
n/ �V
p

is

small (,1023 h at point C), and the Ekman circulation time

z 3=4h/
ffiffiffiffiffiffiffi
n �V
p

, 2 s is much longer than a typical MRI growth time,

so we do not expect these layers to be important for stability. To

minimize their effect further, if necessary, one could increase e, use

differentially rotating rings at the vertical boundaries, or modify

the boundary layer by localized Lorentz forces (Brahme 1970).

A third issue is finite-amplitude or non-linear hydrodynamical

instability in Rayleigh-stable regimes. Few theoretical studies on

this subject exist (Serrin 1959; Joseph & Munson 1970). It has been

argued from experiments that a rapid Couette flow can be non-

linearly unstable (Richard & Zahn 1999). However, there are

indications that such instabilities are caused by wall surface defects

(Schultz-Grunow 1959), which can be minimized. In fact, it has

been shown numerically that a positive angular momentum

gradient strongly resists non-linear instability (Balbus et al. 1996;

Figure 4. Eigenmodes for conditions given by point C in Fig. 3 at B ¼ 0:3

tesla with conducting (a) and insulating (b) radial boundaries. Here, solid

(dotted) lines represent positive (negative) values; x and c are poloidal flux

and stream functions, respectively.

Table 1. Parameters for a gallium annulus with
r1 ¼ 0:05 m, r2 ¼ 0:15 m and h ¼ 0:1 m.

Point V1(rpm) V2(rpm) Rm z

A 3600.00 435.00 0.3319 0.062 93
B 3600.00 390.00 0.3143 20.018 99
C 5089.77 620.70 0.4715 0.069 84
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Hawley et al. 1999). The outcome depends, however, on the

amplitude of the initial perturbation and the strength of the angular

momentum gradient. These questions could be addressed

empirically and relatively inexpensively in prototype experiments

using water.

One would like to predict the non-linear phases of MRI in the

laboratory system. Ultimately, non-linear MRI is closely related to

other important physics of accretion discs involving magnetic field,

i.e. dynamo processes and jet formation. Ongoing three-

dimensional MHD simulations (Kageyama, Ji & Goodman, in

preparation) will provide useful insights here. Indeed, an important

purpose of the experiment is to be a testbed for MHD codes since,

lacking detailed observational constraints, theorists depend upon

computer simulations to understand MRI-driven turbulence.

The experiment will be far more resistive than most accretion

discs, although perhaps not all (Gammie 1996; Gammie & Menou

1998). Simulations indicate that when the field is generated by the

disc itself (magnetic dynamo), then the large-scale field is nearly

toroidal, the important instabilities are non-axisymmetric, and the

turbulence sustains itself only if S and Rm are much larger than the

experiment proposed here will achieve (Balbus & Hawley 1991b;

Brandenburg et al. 1995; Hawley et al. 1996; Sano, Inutsuku &

Miyama 1998; Fleming et al. 2000). On the other hand, the

innermost (and therefore most energetic) parts of accretion discs

often encounter a vertical field as a result of the central compact

object. The works cited above find that, in the presence of an

imposed vertical field, turbulence is driven by axisymmetric modes

and persists to higher resistivity, probably into the experimentally

accessible regime.

In summary, we have used linear stability analyses to explore the

prospects for magnetorotational instability in a magnetized Couette

flow. We find that MRI can be achieved in a moderately rapidly

rotating table-top apparatus using an easy-to-handle liquid metal

such as gallium. Auxiliary experiments with an inexpensive non-

magnetic fluid, such as water, will be valuable both as prototypes

and as controls to distinguish MRI from non-linear hydrodynamic

instabilities. The onset and dynamics of MRI can be detected by

torque measurements of cylinders and magnetic sensors placed

around the annulus. Ultrasonic imaging may also be possible. If

successful, this will be a rare example of a MHD astrophysical

process that can be studied in the laboratory.
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